10 research outputs found

    Leveraging disaggregated accelerators and non-volatile memories to improve the efficiency of modern datacenters

    Get PDF
    (English) Traditional data centers consist of computing nodes that possess all the resources physically attached. When there was the need to deal with more significant demands, the solution has been to either add more nodes (scaling out) or increase the capacity of existing ones (scaling-up). Workload requirements are traditionally fulfilled by selecting compute platforms from pools that better satisfy their average or maximum resource requirements depending on the price that the user is willing to pay. The amount of processor, memory, storage, and network bandwidth of a selected platform needs to meet or exceed the platform requirements of the workload. Beyond those explicitly required by the workload, additional resources are considered stranded resources (if not used) or bonus resources (if used). Meanwhile, workloads in all market segments have evolved significantly during the last decades. Today, workloads have a larger variety of requirements in terms of characteristics related to the computing platforms. Those workload new requirements include new technologies such as GPU, FPGA, NVMe, etc. These new technologies are more expensive and thus become more limited. It is no longer feasible to increase the number of resources according to potential peak demands, as this significantly raises the total cost of ownership. Software-Defined-Infrastructures (SDI), a new concept for the data center architecture, is being developed to address those issues. The main SDI proposition is to disaggregate all the resources over the fabric to enable the required flexibility. On SDI, instead of pools of computational nodes, the pools consist of individual units of resources (CPU, memory, FPGA, NVMe, GPU, etc.). When an application needs to be executed, SDI identifies the computational requirements and assembles all the resources required, creating a composite node. Resource disaggregation brings new challenges and opportunities that this thesis will explore. This thesis demonstrates that resource disaggregation brings opportunities to increase the efficiency of modern data centers. This thesis demonstrates that resource disaggregation may increase workloads' performance when sharing a single resource. Thus, needing fewer resources to achieve similar results. On the other hand, this thesis demonstrates how through disaggregation, aggregation of resources can be made, increasing a workload's performance. However, to take maximum advantage of those characteristics and flexibility, orchestrators must be aware of them. This thesis demonstrates how workload-aware techniques applied at the resource management level allow for improved quality of service leveraging resource disaggregation. Enabling resource disaggregation, this thesis demonstrates a reduction of up to 49% missed deadlines compared to a traditional schema. This reduction can rise up to 100% when enabling workload awareness. Moreover, this thesis demonstrates that GPU partitioning and disaggregation further enhances the data center flexibility. This increased flexibility can achieve the same results with half the resources. That is, with a single physical GPU partitioned and disaggregated, the same results can be achieved with 2 GPU disaggregated but not partitioned. Finally, this thesis demonstrates that resource fragmentation becomes key when having a limited set of heterogeneous resources, namely NVMe and GPU. For the case of an heterogeneous set of resources, and specifically when some of those resources are highly demanded but limited in quantity. That is, the situation where the demand for a resource is unexpectedly high, this thesis proposes a technique to minimize fragmentation that reduces deadlines missed compared to a disaggregation-aware policy of up to 86%.(Català) Els datacenters tradicionals consisteixen en un seguit de nodes computacionals que contenen al seu interior tots els recursos necessaris. Quan hi ha una necessitat de gestionar demandes superiors la solució era o afegir més nodes (scale-out) o incrementar la capacitat dels existents (scale-up). Els requisits de les aplicacions tradicionalment són satisfets seleccionant recursos de racks que satisfan millor el seu SLA basats o en la mitjana dels requisits o en el màxim possible, en funció del preu que l'usuari estigui disposat a pagar. La quantitat de processadors, memòria, disc, i banda d'ampla d'un rack necessita satisfer o excedir els requisits de l'aplicació. Els recursos addicionals als requerits per les aplicacions són considerats inactius (si no es fan servir) o addicionals (si es fan servir). Per altra banda, les aplicacions en tots els segments de mercat han evolucionat significativament en les últimes dècades. Avui en dia, les aplicacions tenen una gran varietat de requisits en termes de característiques que ha de tenir la infraestructura. Aquests nous requisits inclouen tecnologies com GPU, FPGA, NVMe, etc. Aquestes tecnologies són més cares i, per tant, més limitades. Ja no és factible incrementar el nombre de recursos segons el potencial pic de demanda, ja que això incrementa significativament el cost total de la infraestructura. Software-Defined Infrastructures és un nou concepte per a l'arquitectura de datacenters que s'està desenvolupant per pal·liar aquests problemes. La proposició principal de SDI és desagregar tots els recursos sobre la xarxa per garantir una major flexibilitat. Sota SDI, en comptes de racks de nodes computacionals, els racks consisteix en unitats individuals de recursos (CPU, memòria, FPGA, NVMe, GPU, etc). Quan una aplicació necessita executar, SDI identifica els requisits computacionals i munta una plataforma amb tots els recursos necessaris, creant un node composat. La desagregació de recursos porta nous reptes i oportunitats que s'exploren en aquesta tesi. Aquesta tesi demostra que la desagregació de recursos ens dona l'oportunitat d'incrementar l'eficiència dels datacenters moderns. Aquesta tesi demostra la desagregació pot incrementar el rendiment de les aplicacions. Però per treure el màxim partit a aquestes característiques i d'aquesta flexibilitat, els orquestradors n'han de ser conscient. Aquesta tesi demostra que aplicant tècniques conscients de l'aplicació aplicades a la gestió de recursos permeten millorar la qualitat del servei a través de la desagregació de recursos. Habilitar la desagregació de recursos porta a una reducció de fins al 49% els deadlines perduts comparat a una política tradicional. Aquesta reducció pot incrementar-se fins al 100% quan s'habilita la consciència de l'aplicació. A més a més, aquesta tesi demostra que el particionat de GPU combinat amb la desagregació millora encara més la flexibilitat. Aquesta millora permet aconseguir els mateixos resultats amb la meitat de recursos. És a dir, amb una sola GPU física particionada i desagregada, els mateixos resultats són obtinguts que utilitzant-ne dues desagregades però no particionades. Finalment, aquesta tesi demostra que la gestió de la fragmentació de recursos és una peça clau quan la quantitat de recursos és limitada en un conjunt heterogeni de recursos. Pel cas d'un conjunt heterogeni de recursos, i especialment quan aquests recursos tenen molta demanda però són limitats en quantitat. És a dir, quan la demanda pels recursos és inesperadament alta, aquesta tesi proposa una tècnica minimitzant la fragmentació que redueix els deadlines perduts comparats a una política de desagregació de fins al 86%.Arquitectura de computador

    Challenges and opportunities for RISC-V architectures towards genomics-based workloads

    Get PDF
    The use of large-scale supercomputing architectures is a hard requirement for scientific computing Big-Data applications. An example is genomics analytics, where millions of data transformations and tests per patient need to be done to find relevant clinical indicators. Therefore, to ensure open and broad access to high-performance technologies, governments, and academia are pushing toward the introduction of novel computing architectures in large-scale scientific environments. This is the case of RISC-V, an open-source and royalty-free instruction-set architecture. To evaluate such technologies, here we present the Variant-Interaction Analytics use case benchmarking suite and datasets. Through this use case, we search for possible genetic interactions using computational and statistical methods, providing a representative case for heavy ETL (Extract, Transform, Load) data processing. Current implementations are implemented in x86-based supercomputers (e.g. MareNostrum-IV at the Barcelona Supercomputing Center (BSC)), and future steps propose RISC-V as part of the next MareNostrum generations. Here we describe the Variant Interaction Use Case, highlighting the characteristics leveraging high-performance computing, indicating the caveats and challenges towards the next RISC-V developments and designs to come from a first comparison between x86 and RISC-V architectures on real Variant Interaction executions over real hardware implementations.This work has been partially financed by the European Commission (EU-HORIZON NEARDATA GA.101092644, VITAMIN-V GA.101093062), the MEEP Project which received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 946002. The JU receives support from the European Union’s Horizon 2020 research and innovation program and Spain, Croatia and Turkey. Also by the Spanish Ministry of Science (MICINN) under scholarship BES-2017-081635, the Research State Agency (AEI) and European Regional Development Funds (ERDF/FEDER) under DALEST grant agreement PID2021-126248OBI00, MCIN/AEI/10.13039/ 501100011033/FEDER and PID GA PID2019-107255GB-C21, and the Generalitat de Catalunya (AGAUR) under grant agreements 2021-SGR-00478, 2021-SGR-01626 and ”FSE Invertint en el teu futur”.Peer ReviewedPostprint (author's final draft

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Workload-aware placement strategies to leverage disaggregated resources in the datacenter

    Get PDF
    Disaggregation of resources is a datacenter strategy that aims to decouple the physical location of resources from the place where they are accessed, as opposed to physically attached devices connected to the Peripheral Component Interconnect Express (PCIe) bus. By attaching and detaching resources through a fast interconnection network, it is possible to increase the flexibility to manage datacenter infrastructures while keeping the performance of the pooled and disaggregated devices. This article introduces workload scheduling and placement policies for environments with disaggregated memories. These policies are driven by accurate prebuilt performance degradation models. We focus on the use of nonvolatile memory to store data and/or to provide memory extensions. Following a software-defined approach, persistent memories are combined to provide higher capacity and/or bandwidth devices, or used by multiple workloads to increase the number of running workloads. Different combinations of workloads and associated soft deadlines are used to evaluate the placement policies using a system simulator. When using the first-fit policy, results show that a disaggregated system can reduce missed deadlines up to 49% when compared to a physically attached system. When our proposed policy with workload awareness is enabled in a disaggregated system, missed deadlines can be reduced up to 100% (no deadlines missed).This work was supported in part by the Ministry of Economy of Spain under Contract TIN2015-65316-P, in part by the Ministry of Science under Contract PID2019-107255GBC21/AEI/10.13039/501100011033, and in part by the Generalitat de Catalunya under Contract 2014SGR1051.Peer ReviewedPostprint (author's final draft

    Correction to: Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study (Intensive Care Medicine, (2021), 47, 2, (160-169), 10.1007/s00134-020-06234-9)

    No full text
    The original version of this article unfortunately contained a mistake. The members of the ESICM Trials Group Collaborators were not shown in the article but only in the ESM. The full list of collaborators is shown below. The original article has been corrected

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore